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Abstract—When analyzing hypotheses about specific situations
of interest there is often a need to combine information from
multiple sources. This principle belongs to information fusion
in general, and is called belief fusion when the evidence is
represented as belief functions. Because different situations can
involve different forms of belief fusion, there is no single formal
model that is suitable for analyzing every situation. It is therefore
crucial to identify the most adequate fusion operator for modeling
each class of situations to be analyzed. It can be challenging to
determine the best belief fusion model for a specific situation, and
there has been considerable confusion around this issue in the
literature. In this paper we illustrate the importance of selecting
a belief fusion model that adequately matches the situation to be
analyzed, and propose a classification method for this purpose. A
set of formal fusion operators is described to provide examples
of specific models for classes of fusion situations.

I. INTRODUCTION

Mathematical modeling of practical situations enables us to
draw more precise conclusions and to make more accurate
predictions than what is possible by mere intuitionistic rea-
soning. Basic arithmetic operators such as addition, subtrac-
tion, multiplication and division represent simple mathematical
models that have been applied for thousands of years, e.g.
for accounting and engineering. In many cases it is trivial
to determine which is the most correct model for analyzing
a specific situation. However, there are situations where it
challenging to select an adequate formal model. Even if
an operator produces correct or satisfactory results in some
instances of a situation, it might not be an adequate operator
for that situation in general.

For example, an adequate model for predicting the strength
of a chain is the classic principle of the weakest link, meaning
that the chain is only as strong as the weakest of all its links.
A different situation is e.g. to determine the strength of a
relay swimming team, for which an adequate model could be
the average strength of each member of the team. Applying
the weakest link model to assess the overall strength of the
relay swimming team is an approximation that might give the
correct result in some instances, but would produce unreliable
predictions in general. Similarly, applying the average strength
model for assessing the overall strength of the chain represents
an approximation that might produce satisfactory results in
some instances, but would often produce a totally wrong result
which could be fatal if life depended on it. These simple

examples tell us that it is crucial to properly understand the
situation at hand in order to find the most correct model for
analyzing it.

In the domain of belief reasoning there has been consider-
able controversy around operators for belief fusion, especially
related to Dempster’s rule of combination [1]. The traditional
interpretation of Dempster’s rule is that it fuses separate
argument beliefs from independent sources into a single
belief. There are well known examples where Dempster’s
rule produces counterintuitive and clearly wrong results when
interpreted in this way, especially in case of strong conflict
between the input argument beliefs [2], but also in case of
harmony between the input argument beliefs [3]. Motivated
by this observation, numerous authors have proposed alter-
native methods for fusing beliefs [4]–[12]. These operators
are not only formally different, they also model very different
situations, but the authors often do not specify the type of
situations they model. The fact that different situations require
different rules and modeling assumptions is often ignored in
the literature, and therefore represents a significant source of
confusion.

The aim of this paper is to demonstrate that there are several
different classes of belief fusion, and that the formal modeling
of each class requires separate mathematical operators. We
describe characteristics than can be used to identify classes of
situations, and indicate operators that are suitable for modeling
each type of situation. Finally, we argue that the main research
question in this area is not about which operator is the
correct belief fusion operator, but on how to define which
operator is suitable for modeling which class of situations.
To address these issues, we initially provide an overview of
the belief fusion process, which is briefly described in Sec.II.
Sec.III focuses on defining whether a given fusion model is
correct, which is an important aspect enabling the definition
of classes of fusion situations described in Sec.IV. Section V
gives examples of formal fusion models. Sec.VI precedes our
conclusions with a discussion on how we plan to validate
the contributions of this paper and the future work needed
to incorporate them into fusion systems.

II. MODELING THE BELIEF FUSION PROCESS

The belief fusion process involves several related abstrac-
tions as illustrated in Fig.1. The belief fusion process focuses
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Figure 1. A conceptual model of the belief fusion process.

on a (part of the) perceived real world denoted X ′ where var-
ious possible states can be identified, and where it is assumed
that the world is in one specific true state x′ at any given
time. A real world situation could e.g. be the possible medical
diagnoses of a patient in a hospital, where it is assumed that the
patient can only have a single specific diagnosis. The perceived
world and its various states are formally represented as a frame
X consisting of statements, where each statement is assumed to
represent a specific state in the real world, and where there is a
single correct statement x which represents the single true state
x′. In the literature the term "state" is often used in the meaning
of the elements in a frame, but we use the term "statement"
in order to make the philosophical distinction between the
perceived real world X ′ and its formal representation X . If the
real world is inaccurately perceived by the analyst, e.g. when
a patient in reality can have multiple medical diagnoses at
the same time, then a frame assuming only a single possible
diagnosis is clearly inadequate. There is thus no guarantee
that a frame provides an adequate representation of the real
world. Instead, it is up to the analyst to design the most
appropriate frame for each situation to be analyzed. If the
analyst thinks that multiple simultaneous medical diagnoses
are possible, then it is more adequate to design a frame which
reflects precisely that.

Belief masses are assigned to statements in the frame, and
are assumed to provide support for assessing the correctness
of those statements. There can be multiple sources of belief
assignments to the same frame, so it is necessary to name
each specific source as e.g. A, B, etc. The belief source can
e.g. be a human analyst, a sensor, or the output from a previous
analytic process. It is also possible to consider the same
agent as multiple source when the agent expresses multiple
beliefs e.g. in the form of multiple hints about a specific
frame. As an example consider the case when a person gives
hints about the value of a dice with the two propositions
i): "the value is a prime number" and ii): "the value is an
even number" which can be expressed as beliefs and fused
with an appropriate belief fusion operator to conclude that the

correct value must be 2. In case of multiple belief sources it
is assumed that each source represents partial evidence about
the correct statement, so that the most complete evidence can
be obtained by fusing the beliefs with an appropriate fusion
operator. As a consequence it is assumed that fused belief
from multiple sources provides stronger support for the correct
statement x in the frame than the support that can be provided
by beliefs from single sources alone.

So far we have used the concepts of true state and correct
statement without clearly defining what they mean. The next
section defines what we mean by truth of states and correctness
of fusion results and fusion models.

III. CORRECTNESS AND CONSISTENCY CRITERIA FOR

FUSION MODELS

We argue that meaningful and reliable belief fusion depends
on the fusion operator’s ability to produce correct results for
the practical or hypothetical situation that is being analyzed.
This calls for a definition of what it means for results to be
correct.

Definition 1 (Correctness of Results.): In general the cor-
rectness of results produced by a model is the degree to which
the results represent the true state of the real situation that is
being modeled.

To clarify this definition it is useful to distinguish between
three types of truth: 1) ground truth, 2) consensus truth and
3) subjective truth, as described below, where ground truth is
the strongest and subjective truth is the weakest form of truth.

∙ Ground truth about a situation is the objectively observ-
able state of the situation.

∙ Consensus truth about a situation is the state that is
identified to be the actual state by a commonly shared
opinion about the situation, or the state that is identified
to be the actual state according to commonly accepted
norms or standards.

∙ Subjective truth about a situation is the state identified
to be actual state by the analyst’s own opinion about the
situation.



The term "true state" can also be used in the sense that the
state is satisfactory or preferred. For example when a group of
people wants to select a movie to watch at the cinema together
it would seem strange to say that one specific movie is more
true than another. However, in this case the term truth can
interpreted in the sense that one specific movie (the true state)
can be considered to be the most satisfactory for all the group
members to watch together.

Fusion models produce output results when used to analyze
fusion situations. Three different types of result correctness
emerge from the three different types of truth, where objective
correctness is the strongest, and subjective correctness is the
weakest.

∙ Objective result correctness is the degree to which the
result represents the ground truth of a situation.

∙ Consensus result correctness is the degree to which the
result represents the consensus truth of a situation.

∙ Subjective result correctness is the degree to which the
result represents the subjective truth of a situation.

Depending on whether ground truth, consensus truth or
subjective truth is available, the strongest form of correctness
should be required for assessing the results. For example
assume a weather forecast model with all its various input
parameters and their complex relationships. Weather forecasts
can be compared with the actual weather when the time of
the forecast arrives a day or two later, so that it is reason-
able to require objective correctness when assessing weather
forecasting models.

The case of predicting global warming might seem similar
to that of forecasting the weather, because models for global
warming are also based on many different input parameters
with complex relationships. Although predicting global warm-
ing to occur over the next 100 years can be objectively verified
or refuted, the time scale makes it impossible to require
objective correctness in the short term. Instead, practical
assessment of model correctness must be based on consensus
among experts. So with no ground truth as bench mark it
is only possible to require consensus correctness in the short
term. An paradoxical observation is that in 100 years (e.g.
after year 2100) when ground truth about global warming
predicted for the next 100 years finally becomes available
there will probably no longer be any interest in assessing
the correctness of the models used to make the predictions,
and the individuals who designed the models will be long
gone. Designers of global warming models will thus never
be confronted with the ground truth about their models and
predictions. Despite the lack of objective basis, consensus
correctness as a criterion is often used for selecting specific
models and for determining whether or not the results they
produce shall be used in planning and decision making.

In situations where ground truth can not be observed and
consensus truth is impossible to obtain, only subjective criteria
for truth can be used. Models for which subjective correctness
criteria can be used are e.g. models for making personal
decisions about which career path to follow or which partner to
live with. In theory such decision are made based on multiple

forms of evidence which must be fused to form an opinion.
People normally do not use formal models for analyzing such
situations, and instead use their intuition. Models assessed
under subjective correctness criteria are often only used for
practical decision making by an individual a small number of
times during a lifetime, so not even statistical evidence can
be obtained. However there are expert systems for e.g. career
path choice and partner matching, in which case it is possible
to determine statistically whether a particular model predicts
"good" career choices and "happy" unions in the long term.

With regard to Definition 1 it is necessary to examine the
case when it has only been observed once or a small number
of times that results from a model represent the true state of a
situation. Although a model produces correct results in some
instances there might be other instances where the results are
clearly wrong, in which case the model can not be considered
to be correct in general. As long as only instances with correct
results have been observed the analyst might erroneously think
that the model is correct in general.

For example, assume a rather naïve analyst who misinter-
prets the situation of adding apples from two baskets, and
erroneously thinks that it should be modeled with the product
rule. Assume that the analyst tries a specific example with
two apples in each basket, and computes the sum with the
product rule, which results in 4 apples. When observing a real
example of two baskets of two apples each it turns out that
adding them together also produces 4 apples. This result could
mistakenly be interpreted so that the model is correct simply
because the result represents ground truth in this particular
instance. It is questionable whether a model for analyzing a
situation can be characterized as a correct model just because
it produces results that by coincidence correspond to the truth
of the situation. In order for a model to be correct it is natural
to require that results produced by it are generally correct and
not just by coincidence in specific instances of a situation.
In order to distinguish between coincidentally correct results
and generally correct results, it is necessary to also consider
consistency which we define as follows.

Definition 2 (Model Correctness): A model is correct for a
specific situation when it consistently produces correct results
in all instances of the situation.

On a high level of abstraction a correct reasoning model
according to Definition 2 must faithfully reflect the (class of)
situations that are being modeled. A precise way of expressing
this principle is that for a given a class of situations there is
one correct model. Note that is possible to articulate three
types of model correctness according to the three types of
result correctness.

∙ Objective model correctness for a specific class of
situations is the model’s ability to consistently produce
objectively correct results for all possible situations in
the class.

∙ Consensus model correctness for a specific class of
situations is the model’s ability to consistently produces
consensus correct results for all possible situations in the
class.



∙ Subjective model correctness for a specific class of
situations is the model’s ability to consistently produces
subjectively correct results for all possible situations in
the class.

Depending on whether ground truth, consensus truth or
subjective truth is available, the strongest form of model cor-
rectness should be required for practical analysis. Observing
result correctness in one instance is not sufficient to conclude
that a model is correct. It can be theoretically impossible
to verify that all possible results are consistently correct, so
proving that a model is correct in general can be challenging.
On the other hand, if a single false result is observed it can be
concluded that the model is incorrect for the modeled. In such
cases it might be meaningful to indicate the range of validity
of the model which limits the range of input arguments or
possibly the range of output results.

IV. CLASSES OF FUSION SITUATIONS

Situations of belief fusion involve belief arguments from
multiple sources that must be fused on some way to produce
a single belief argument. More specifically, the situation is
characterized by a frame consisting of two or more statements,
and a set of different belief arguments about these statements.
It is assumed that each belief argument supports one or several
statements. The purpose of belief fusion is to produce a new
belief that identifies the most "correct" statement(s) in the
frame. The meaning of most correct statement can also be
that it is the most acceptable or most preferred statement.

Different beliefs can be fused in various ways, each having
an impact on how the specific situation in evidence fusion is
modeled. It is often challenging to determine the correct or the
most appropriate fusion operator for a specific situation. One
way of addressing this challenge is to categorize these specific
situations according to their typical characteristics, which
would then allow for determining which fusion operators are
more adequate to each category. One of us (Josang), has
studied these characteristics and was able to establish four
distinct classes of fusion situations, which are described below.

∙ Cumulative Belief Fusion is when it is assumed that it is
possible to collect an increasing amount of independent
evidence by including more and more arguments, and that
certainty about the most correct state increases with the
amount of evidence accumulated. A typical case depicting
this type of fusion is when one makes statistical observa-
tions about possible outcomes, i.e. the more observations
the stronger the analyst’s belief about the likelihood of
each outcome. For example, a mobile network operator
could observe the location of a subscriber over time,
which will produce increasing certainty about the most
frequent locations of that subscriber. However, the result
would not necessarily be suitable for indicating the exact
location of the subscriber at a specific time.

∙ Averaging Belief Fusion is when dependence between
arguments is assumed. In other words, including more
arguments does not mean that more evidence is support-
ing the conclusion. An example of this type of situation is

when a jury tries to reach a verdict after having observed
the court proceedings. Because the evidence is limited to
what was presented to the court, the certainty about the
verdict does not increase by having more jury members
expressing their beliefs, since they were all exposed to
the same evidence.

∙ Constraining Belief Fusion is when it is assumed that (a)
each belief argument can dictate which states of the frame
are the most correct, and (b) conflicting belief between
the two sources is assigned to common states considered
correct by both sources. In this fusion class, if two
belief arguments express totally conflicting beliefs, i.e.
no common state is considered correct by both sources,
then they effectively veto each other’s beliefs - which
means that no state is correct. An example is when two
persons try to agree on seeing a movie at the cinema. If
their preferences include some common movies they can
decide to see one of them. Yet, if their preferences do not
have any movies in common then there is no solution, so
the rational consequence is that they will not watch any
movie together.

∙ Consensus & Compromise Fusion is when no single
belief argument alone can dictate that specific states
of the frame are the most correct. In this fusion class
the analyst naturally wants to preserve shared beliefs
from each argument, and in addition transform conflicting
beliefs into new shared beliefs on union subsets. In this
way consensus belief is preserved when it exists and
compromise belief is formed when necessary. In case
of totally conflicting beliefs on a binary frame, then the
resulting fused belief is totally uncertain. An example is
when analysing evidence about the Kennedy murder case,
where the analyst collects statements from two witnesses.
Assuming that both witnesses claim to know with some
certainty that Oswald killed Kennedy, the consensus &
compromise fusion would say the same, because there
is a consensus. However, when assuming that witness
1 claims to know with certainty that Oswald killed
Kennedy, and that witness 2 claims to know with certainty
that Oswald did not kill Kennedy, then consensus &
compromise fusion would return the result that it is
totally uncertain whether Oswald killed Kennedy, because
uncertainty is the best compromise in case of totally
conflicting beliefs.

It can be challenging to decide which fusion class is the
most appropriate for a specific situation. For instance, consider
the example of determining the location of a mobile phone
subscriber at a specific point in time by collecting location
evidence from base station, in which case it seems natural to
use constraining belief fusion. If two adjacent base stations
detect the subscriber, then the belief constraint operator can
be used to locate the subscriber within the overlapping region
of the respective radio cells. However, if two base stations
far apart detect the subscriber at the same time, then the
result of constraining belief fusion is not defined so there is



no conclusion. With additional assumptions, it would still be
reasonable to think that the subscriber is probably located in
one of the two cells, but not which one in particular, and that
the case needs further investigation because the inconsistent
signals might be caused by en error in the system.

While defining classes of fusion situations helps in scoping
the solution space, there is still the issue of determining which
class a specific situation belongs to. The approach we propose
for this classification problem is to specify a set of assumptions
about a fusion situation, where each assumption can be judged
to be either valid or invalid for the situation. In other words,
we decompose the classification problem so it now becomes
a matter of defining whether specific assumptions apply to
the situation. The set of assumptions below can be used to
determine which class a situation belongs to.

In order to select the correct fusion model the analyst must
consider each assumption and determine whether it applies
to the situation to be analyzed. The correct fusion model is
identified as a function of the assumption that applies to the
situation to be analyzed.

1) It is assumed that in case two belief arguments are in
total conflict, then no statement can be correct.
=⇒ Constraining Fusion

2) It is assumed that in case two belief arguments are
in total conflict, then all statements supported by the
arguments can be correct in a statistical sense.
=⇒ Cumulative Fusion or Averaging Fusion

3) It is assumed that in case two belief arguments are in
total conflict, then one of the supported statements is
correct, but it is uncertain which of them is correct.
=⇒ Consensus & Compromise Fusion

4) Idempotent belief fusion is assumed, i.e. a belief
argument fused with itself should always produce the
same belief argument.
=⇒ Averaging Fusion or Consensus & Compromise
Fusion

5) Idempotent belief fusion is not assumed, i.e. a partially
uncertain belief argument fused with itself should
produce a fusion result with less uncertainty.
=⇒ Cumulative Fusion or Constraining Fusion

The set of assumptions above is not exhaustive, additional
assumptions can be specified and used to identify the correct
fusion model. There are also other classes of fusion situations
than those described above, for which different assumptions
should be used. By associating specific assumptions to each
class of fusion situation it is easier for analysts to identify and
select the correct fusion model to be applied.

In the end, classifying a specific situation is a matter of
assessing whether specific assumptions are valid or not valid
for that situation.

V. FORMAL BELIEF FUSION MODELS

Subjective opinions [13] generalize traditional belief func-
tions and lend themselves to simple mathematical expressions
of fusion models. We therefore use the opinion representation
for describing the various formal fusion models, but the ex-
pressions can easily be mapped to traditional belief functions.

A subjective opinion expresses belief about statements in a
frame. Let X be a frame of cardinality k. An opinion distributes
belief mass over the reduced powerset R (X) of cardinality κ.
The reduced powerset R (X) is defined as:

R (X) = P (X)∖{X , /0} , (1)

where P (X) = 2X denotes the powerset of X . All proper
subsets of X are elements of R (X), but the frame {X} and
empty set { /0} are not elements of R (X).

Let b⃗X be a belief vector over the elements of R (X), let uX

be the complementary uncertainty mass, and let a⃗ be a base
rate vector over X . Whenever relevant, a superscript such as
A denotes the opinion owner. Then a subjective opinion ωA

X is
the composite function expressed as:

ωA
X = (⃗bX ,uX , a⃗X ) . (2)

The attribute A is thus the belief source, and X is the target
frame. The belief, uncertainty and base rate parameters satisfy
the following additivity constraints.

Belief additivity: uX + ∑
xi∈R (X)

b⃗X (xi) = 1, where x ∈ R (X) (3)

Base rate additivity:
k

∑
i=1

a⃗X (xi) = 1, where x ∈ X (4)

The belief vector b⃗X has κ = (2k −2) parameters, whereas
the base rate vector a⃗X only has k parameters. The uncertainty
parameter uX is a simple scalar. A general opinion thus
contains (2k + k− 1) parameters. However, given that Eq.(3)
and Eq.(4) remove one degree of freedom each, opinions over
a frame of cardinality k only have (2k + k − 3) degrees of
freedom. The probability projection of hyper opinions is the
vector denoted as E⃗X in Eq.(5).

E⃗X (xi) = ∑
x j∈R (X)

a⃗X (xi/x j) b⃗X (x j) + a⃗X (xi) uX , ∀xi ∈ R (X) (5)

where a⃗X (xi/x j) defined in Eq.(6) denotes relative base rate,
i.e. the base rate of subset xi relative to the base rate of
(partially) overlapping subset x j.

a⃗X (xi/x j) =
a⃗X (xi ∩ x j)

a⃗X (x j)
, ∀ xi,x j ⊂ X . (6)

General opinions are also called hyper opinions. A multi-
nomial opinion is when belief mass only applies to singleton
statements in the frame. A binomial opinion is when the
frame is binary. A dogmatic opinion is an opinion without
uncertainty, i.e. where u = 0. A vacuous opinion is an opinion
that only contains uncertainty, i.e. where u = 1.



Equivalent probabilistic representations of opinions, e.g. as
a Beta pdf (probability density function) in case of binomial
opinions, as a Dirichlet pdf in case of multinomial opinions,
or as a hyper Dirichlet pdf in case of hyper opinions offer
an alternative interpretation of subjective opinions in terms of
traditional statistics [13].

A. Constraining Fusion

The belief constraint operator described here is an extension
of Dempster’s rule which in Dempster-Shafer belief theory is
often presented as a method for fusing evidence from different
sources [1] in order to identify the most likely hypothesis
from the frame. Many authors have however demonstrated that
Dempster’s rule is not an appropriate operator for evidence
fusion [2], and that it is better suited as a method for
combining constraints [14], [15], which is also our view.

Assume two opinions ωA
X and ωB

X over the frame X of
cardinality k with reduced powerset R (X) of cardinality κ. The
superscripts A and B are attributes that identify the respective
belief sources or belief owners. These two opinions can be
mathematically merged using the belief constraint operator
denoted as "⊙" which can be expressed as:

Constraining Belief Fusion: ωA&B
X = ωA

X ⊙ωB
X . (7)

Belief source combination denoted with "&" thus corre-
sponds to opinion fusion with "⊙". The algebraic expression
of the belief constraint operator for subjective opinions is
described next.

ωA&B
X = (8)

⎧⎨
⎩

b⃗A&B(xi) = Har(xi)

(1−Con) , ∀ xi ∈ R (X), xi ∕= /0

uA&B
X =

uA
X uB

X
(1−Con)

a⃗A&B(xi) =
a⃗A(xi)(1−uA

X )+a⃗B(xi)(1−uB
X )

2−uA
X−uB

X
, ∀ xi ∈ X , xi ∕= /0

The term Har(xi) represents the degree of Harmony (over-
lapping belief mass) on xi. The term Con represents the degree
of Conflict (non-overlapping belief mass) between ωA

X and ωB
X .

These are defined below:

Har(xi) = b⃗A(xi)u
B
X + b⃗B(xi)u

A
X +∑

y∩z=xi

b⃗A(y)⃗bB(z) (9)

Con = ∑
y∩z= /0

b⃗A(y)⃗bB(z) (10)

The divisor (1−Con) in Eq.(8) normalizes the derived belief
mass; it ensures belief mass and uncertainty mass additivity.
The use of the belief constraint operator is mathematically
possible only if ωA and ωB are not totally conflicting, i.e., if
Con ∕= 1.

The belief constraint operator is commutative and non-
idempotent. Associativity is preserved when the base rate is
equal for all agents. Associativity in case of different base rates
requires that all preference opinions be combined in a single
operation which would require a generalization of Eq.(8) for
multiple agents, i.e. for multiple input arguments, which is
relatively trivial.

B. Cumulative Fusion

The cumulative fusion rule is equivalent to a posteriori
updating of Dirichlet distributions. Its derivation is based
on the bijective mapping between the belief and evidence
notations described in [13].

The symbol “⋄” denotes the cumulative fusion of two
observers A and B into a single imaginary observer A⋄B.

Let ωA and ωB be opinions respectively held by agents A
and B over the same frame X of cardinality k with reduced
powerset R (X) of cardinality κ. Let ωA⋄B be the opinion
where:

Case I: For uA ∕= 0 ∨ uB ∕= 0 :

⎧⎨
⎩

bA⋄B(xi) = bA(xi)uB+bB(xi)uA

uA+uB−uAuB

uA⋄B = uAuB

uA+uB−uAuB

(11)

Case II: For uA = 0 ∧ uB = 0 :

⎧⎨
⎩

bA⋄B(xi) = γA bA(xi)+ γBbB(xi)

uA⋄B = 0
(12)

where

⎧⎨
⎩

γA = lim
uA→0
uB→0

uB

uA+uB

γB = lim
uA→0
uB→0

uA

uA+uB

Then ωA⋄B is the cumulatively fused opinion of ωA and ωB,
representing the combination of independent opinions of A and
B. By using the symbol ‘⊕’ to designate this belief operator,
cumulative fusion is expressed as:

Cumulative Belief Fusion: ωA⋄B
X = ωA

X ⊕ωB
X . (13)

The cumulative fusion operator is commutative, associative
and non-idempotent. In Eq.(12) the associativity depends on
the preservation of relative weights of intermediate results
through the weight variable γ, in which case the cumulative
rule is equivalent to the weighted average of probabilities.



C. Averaging Fusion

Averaging belief fusion is derived from averaging arguments
represented as evidence (not belief) through the bijective
mapping between evidence and belief in subjective logic [13].

The symbol "⋄" denotes the averaging fusion of two ob-
servers A and B into a single imaginary observer A⋄B.

Let ωA and ωB be the respective opinions of agents A and B
over the same frame X of cardinality k with reduced powerset
R (X) of cardinality κ. Let ωA⋄B be the opinion such that:

Case I: For uA ∕= 0 ∨ uB ∕= 0 :

⎧⎨
⎩

bA⋄B(xi) = bA(xi)uB+bB(xi)uA

uA+uB

uA⋄B = 2uAuB

uA+uB

(14)

Case II: For uA = 0 ∧ uB = 0 :

⎧⎨
⎩

bA⋄B(xi) = γA bA(xi)+ γBbB(xi)

uA⋄B = 0
(15)

where

⎧⎨
⎩

γA = lim
uA→0
uB→0

uB

uA+uB

γB = lim
uA→0
uB→0

uA

uA+uB

Then ωA⋄B is the averaging opinion of ωA and ωB, repre-
senting the combination of the possibly dependent opinions
of A and B. By using the symbol ‘⊕’ to designate this belief
operator, averaging fusion is expressed as:

Averaging Belief Fusion: ωA⋄B
X = ωA

X⊕ωB
X . (16)

It can be verified that the averaging fusion rule is commu-
tative and idempotent; but it is not associative.

D. Consensus & Compromise Fusion

CC-fusion (Consensus & Compromise) is a new fusion
model specifically designed to satisfy the requirements of be-
ing idempotent, having a neutral element, and where conflict-
ing beliefs result in compromise beliefs. This shows that it is
possible to design fusion models to fit particular requirements.

Assume two opinions ωA
X and ωB

X over the frame X of
cardinality k with reduced powerset R (X) of cardinality κ. The
superscripts A and B are attributes that identify the respective
belief sources or belief owners. These two opinions can be
mathematically merged using the CC-fusion operator denoted
as " CC⃝ " which can be expressed as:

Consensus & Compromise Fusion: ωA♥B
X = ωA

X CC⃝ ωB
X . (17)

Belief source combination denoted with "♥" thus corre-
sponds to opinion fusion with " CC⃝ ". The CC-operator is

formally described next. It is a two-step operator where the
consensus step comes first, and then the compromise step.

1) Consensus Step: The consensus step simply consists of
determining shared belief mass between the two arguments,
which is stored as the belief vector b⃗cons

X expressed by Eq.(18).

b⃗cons
X (xi) = min

(⃗
bA

X (xi), b⃗B
X (xi)

)
. (18)

The sum of consensus belief denoted bcons
X is expressed as:

bcons
X = ∑

xi∈R (X)

b⃗cons
X (xi) (19)

The residue belief masses of the arguments are:
{

b⃗resA
X (xi) = b⃗A

X (xi)− b⃗cons
X (xi)

b⃗resB
X (xi) = b⃗B

X (xi)− b⃗cons
X (xi)

(20)

2) Compromise Step: The compromise step redistributes
conflicting residue belief mass to produce compromise belief
mass, stored in b⃗comp

X expressed by Eq.(21).

b⃗comp
X (xi) = b⃗resA(xi)uB

X + b⃗resB(xi)uA
X

+ ∑
{y∩z}=xi

a⃗X (y/z) a⃗X (z/y) b⃗resA(y) b⃗resB(z)

+ ∑
{y∪z}=xi
{y∩z}∕= /0

(1− a⃗X (y/z) a⃗X (z/y)) b⃗resA(y) b⃗resB(z)

+ ∑
{y∪z}=xi
{y∩z}= /0

b⃗resA(y) b⃗resB(z) , where xi ∈ P (X) .

(21)
The preliminary uncertainty upre

X is computed as:

upre
X = uA

X uB
X . (22)

The sum of compromise belief denoted bcomp
X is:

bcomp
X = ∑

xi∈P (X)

b⃗comp
X (xi) . (23)

In general bcons
X +bcomp

X +upre
X < 1, so normalisation of b⃗comp

X
is required. The normalisation factor denoted fnorm is:

fnorm =
1− (bcons

X +upre
X )

bcomp
X

. (24)

Because belief on X is uncertainty, the fused uncertainty is:

uA♥B
X = upre

X + fnorm b⃗comp
X (X) . (25)

After computing the fused uncertainty the compromise
belief mass on X must be set to zero, i.e.

b⃗comp
X (X) = 0 . (26)

After normalisation the resulting CC-fused belief is:

b⃗A♥B
X (xi) = b⃗cons

X (xi) + fnorm b⃗comp
X (xi) , ∀xi ∈ R (X) . (27)

The CC-operator is commutative, idempotent and semi-
associative, with the vacuous opinion as neutral element. Semi-
associativity means that 3 or more arguments must first be
combined together in the Consensus Step, and then together
again in the Compromise Step before normalisation.



VI. DISCUSSION AND FUTURE WORK

The approach laid out above is aimed at improving the
process of modeling belief fusion problems.

As part of our work we participate in ETURWG1, a working
group of the International Society for Information Fusion
(ISIF) devoted to the development of URREF, a framework
for evaluation of uncertainty representation and reasoning2

[16]. URREF includes use cases, associated data sets, and an
ontology on uncertainty representation and reasoning [17].

The problem of uncertainty in belief fusion has in the
last few years received much attention from the information
fusion community [18]. We have designed our approach to
be not only consistent with URREF, but also compatible
with, and agnostic to, the various approaches for uncertainty
representation discussed in the ETURWG forum.

Among the main issues we still need to address is tool
support for the classification process, to help the analyst in
selecting the most optimal fusion model. At this point, we
are considering whether to create a specific ontology for the
belief function process, or to simply add the main concepts and
relationships to the URREF ontology. The latter is appealing
since it would leverage the work already done and the support
from ISIF, while the former would provide us with more
flexibility to define the specific aspects involved in answering
the propositions.

Part of our future work also includes defining the formalism
behind our ontology. More specifically, most languages for
expressing ontologies, such as the most popular variant of the
W3C Recommendation OWL [19], are based on Description
Logics [20]. Therefore, they do not have standardized support
for uncertainty reasoning, a major aspect in our research.
At this point, we are considering to work with probabilis-
tic ontologies written in PR-OWL [21], [22], which extend
traditional ontologies to capture both domain semantics and
associated uncertainty about the domain

VII. CONCLUSIONS

The term belief fusion is vague in the sense that it can
mean different things, making it very difficult for an analyst
to define how best to address a belief fusion problem. The
main objective of this work is to provide a means for analysts
to define the most adequate fusion operator for the situation
at hand. This paper brings two major contributions towards
this objective. The first is a taxonomy of fusion situations
based on their main characteristics, which synthesizes the
problem to a limited number of classes. The second is a
straightforward approach to the complex problem of assigning
any specific situation to a given class, based on a set of
assumptions the analyst could easily test against the situation
to be classified. Taken together, these contributions have the
potential to improve the way analysts address the fusion
problem, both by standardizing the process and making it less
subjective. We are currently leveraging the work on the ISIF
ETURWG group for validation of our results.

1Evaluation of Techniques for Uncertainty Representation
2URREF is available at http://eturwg.c4i.gmu.edu
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